
Technische Universität München WS 2017/18
Institut für Informatik
Theoretical Computer Science

Fundamental Algorithms 4 - Solution Examples

Exercise 1
1. Try the Recursion Tree Method for the following recurrence:

T (n) = T
(

1
3n

)
+ T

(
2
3n

)
+ θ(n),

assuming that all occurring divisions are without remainder and T (1) = 0.

2. Show that the height of the recursion tree is in O(log(n)).

3. What could be a flaw using the recursion tree method for such unbalanced trees?

4. Show that T (n) ∈ θ(n log(n)), anyway, by using the substitution method.

Solution:
1. Let c be the constant in the θ(n) term. We then obtain the recursion tree

cn

c · 1
3n c · 2

3n

c · 1
9n c · 2

9n c · 2
9n c · 4

9n

On each level, we obtain a total of cn operations.

2. The longest path in the recursion tree is the rightmost path with problem size n→ 2
3cn→ (2

3)2cn→
· · · → 1 until we stop at problem size 1. The height h of the tree can be determined via the equation
minh(2

3)hcn ≤ 1, leading to h = dlog 3
2
cne (since loga b = − log 1

a
b).

We could expect the total cost to be O(cn log 3
2
n) = O(n logn).

3. Problem: If the tree was a complete binary tree, we would have

2h = 2
log 3

2
n

= 2
log2 n

log2
3
2 = n

1
log2

3
2 = n

log 3
2

2

log 3
2

3
2 = n

log 3
2

2

leaves. Thus, the number of terms would be Θ(n
log 3

2
2
) on the last level. As log 3

2
2 ≈ 1.7095 > 1, this

especially means that the number of terms would be ω(n). Hence, the simple approach of assuming
constant effort c for T (1) on the final level does no longer work: In that case, the costs would sum up
to Θ(nd) on the last level – and not cn!
Hence, we’d have to explicitly consider that the tree starts to thin out much earlier (starting at level
1 + log3 n), and we would have to examine the exact cost on all subsequent levels, which is more tedious
than our tree diagram suggests.

1



4. We simplify and assume that the total cost is T (n) = an logn ∈ θ(n logn) and use the substitution
method to verify this:

T (n) = T (1
3n) + T (2

3n) + cn

= a(1
3n) log(1

3n) + a(2
3n) log(2

3n) + cn

= 1
3an(log 1

3 + logn) + 2
3an(log 2

3 + log(n)) + cn

= an logn− a
(

1
3n log 3 + 2

3n log 3
2

)
+ cn

= an logn− an
(

1
3 log 3 + 2

3 log 3− 2
3 log 2

)
+ cn

= an logn− an
(
log 3− 2

3

)
+ cn.

By choosing a such that
an

(
log 3− 2

3

)
= cn,

i.e.
a = c

log 3− 2
3
,

we obtain
T (n) = an logn

Exercise 2
For the so-called BFPRT Algorithm, an algorithm to determine the median element of an array, we obtain
the following (slightly simplified) recurrence equation for its running time T (n) (depending on the number n
of elements):

T (n) = s(n, k) + T
(

1
kn

)
+ T

(
l

2kn
)
.

k and l are parameters (k usually small, for example k = 3 or k = 5) where k = 2l + 1. For the function s,
we can assume s(n, k) ∈ Θ(n log k).

1. Show that T (n) ∈ O(n).

2. Does it make sense to use growing values for k (and l, respectively)?

Solution:
We try to prove the claim by inserting the assumed solution T (n) ≤ cn into the recurrence equation:

cn ≥ s(n, k) + c
n

k
+ c

l

2kn

cn

(
1− 1

k
− l

2k

)
≥ s(n, k)

As s(n, k) ∈ Θ(n log k), there is a constant Cs such that s(n, k) ≥ Csn log k for large n. Therefore,

cn

(
1− 1

k
− l

2k

)
≥ s(n, k) ≥ Csn log k,

and thus
c ≥ Cs log k

1− 1
k −

l
2k

∈ O(log k)

Hence, we can choose a suitable, large enough c that is independent of n, and thus prove T (n) ∈ O(n). But,
c has to slightly grow with k, as c ∈ O(log k), consequently k should be of limited size.

2


